[Total No. of Questions - 9] [Total No. of Printed Pages - 4] (2125)

15013

B. Tech 1st Semester Examination Engineering Mathematics-I (NS) NS-101

Time: 3 Hours Max. Marks: 100

The candidates shall limit their answers precisely within the answerbook (40 pages) issued to them and no supplementary/continuation sheet will be issued.

Note: Attempt five questions in all, selecting one question from each section A, B, C & D of the question paper and all the subparts of the question in section E.

SECTION - A

- 1. (a) Investigate the values of λ and μ so that the equations $2x-5y+2z=8,\ 2x+4y+6z=5,\ x+2y+\lambda z=\mu$ have (i) unique solution (ii) no solution (iii) an infinite number of solutions.
 - (b) Find the eigen values and eigen vectors of $A = \begin{bmatrix} 2 & 1 & 1 \\ 1 & 2 & 1 \\ 0 & 0 & 1 \end{bmatrix}$

(10+10=20)

- (a) Reduce the quadratic form 2xy + 2xz 2yz to a canonical form. Also write the model matrix and nature of the quadratic form.
 - (b) Define Unitary matrix. Show that the eigen values of a unitary matrix are of unit modulus. (10+10=20)

[P.T.O.]

2 15013 SECTION - B

3. (a) If $u = tan^{-1} \left(\frac{x^3 + y^3}{x + y} \right)$ then prove that

$$x^{2} \frac{\partial^{2} u}{\partial x^{2}} + 2xy \frac{\partial^{2} u}{\partial x \partial y} + y^{2} \frac{\partial^{2} u}{\partial y^{2}} = 2\cos 3u \sin u$$

(b) Find the maximum and minimum distance of the point (3,4,12) from the sphere

$$x^2 + y^2 + z^2 = 1$$
 (10+10=20)

4. (a) If $x^2 + y^2 + z^2 - 2xyz = 1$. Show that dx dy dz

$$\frac{dx}{\sqrt{1-x^2}} + \frac{dy}{\sqrt{1-y^2}} + \frac{dz}{\sqrt{1-z^2}} = 0$$

(b) Divide 120 into three parts so that the sum of their products taken two at a time shall be maximum.

(10+10=20)

SECTION - C

- 5. (a) Evaluate $\iint_{R} (x+y)^2 dxdy$, where R is the parallelogram in the xy-plane with vertices (1,0), (3,1), (2,2), (0,1) using the transformation u = x + y and v = x 2y.
 - (b) By transforming into cylindrical coordinates evaluate the integral $\iiint (x^2 + y^2 + z^2) dxdydz$ taken over the region $0 \le z \le x^2 + y^2 \le 1$. (10+10=20)
- 6. (a) Define Beta and Gama functions. Also derive the relation between them.

3 15013

(b) Find the volume bounded by the paraboloid $x^2 + y^2 = az$, the cylinder $x^2 + y^2 = 2ay$ and the plane z = 0. (10+10=20)

SECTION - D

7. (a) Use 'C+iS' method to find the sum of the following series

$$\frac{\sin\alpha}{1!} - \frac{\sin 2\alpha}{2!} + \frac{\sin 3\alpha}{3!} - \frac{\sin 4\alpha}{4!} + \dots \infty.$$

- (b) Expand $\sin^7 \theta \cos^3 \theta$ in a series of sines of multiples of θ . (10+10=20)
- 8. (a) Separate $tan^{-1}(cos\theta+isin\theta)$ into real and imaginary parts.
 - (b) If $\tan(\theta + i\phi) = \cos\alpha + i\sin\alpha$, prove that $\theta = \frac{n\pi}{2} + \frac{\pi}{4}$ and $\phi = \frac{1}{2} \log \tan\left(\frac{\pi}{4} + \frac{\alpha}{2}\right). \tag{10+10=20}$

SECTION - E

9. (a) If u is a homogenous function of degree n in x and y then prove that:

$$x\frac{\partial u}{\partial x} + y\frac{\partial u}{\partial v} = nu$$

- (b) If $x=r\cos\theta$, $y=r\sin\theta$,, z=z, evaluate $\frac{\partial(x,y,z)}{\partial(r,\theta,\phi)}$.
- (c) Solve $\lim_{(x,y)\to(0,0)} \frac{2xy}{(x^2+y^2)}$.

4 15013

- (d) Solve the integral $\int_0^\infty \frac{1}{\sqrt{1-x^4}} dx$ by using beta/gamma function.
- (e) Separate tan (x+iy) into real and imaginary parts.
- (f) Find the eigen values of $\begin{bmatrix} 1+i & -6 \\ 8 & 3-5i \end{bmatrix}$.
- (g) Use Taylor's theorem to find $\sqrt{102}$.
- (h) Find $\frac{dy}{dx}$, when $x^y+y^x=c$.
- (i) Evaluate $\int_{0}^{\frac{\pi}{2}} \cos^4 3\theta \sin^3 6\theta \ d\theta.$
- (j) Find the value of $\Gamma\left(\frac{1}{2}\right)$. (10×2=20)